Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks.

نویسندگان

  • Daniel R Lewis
  • Melissa V Ramirez
  • Nathan D Miller
  • Prashanthi Vallabhaneni
  • W Keith Ray
  • Richard F Helm
  • Brenda S J Winkel
  • Gloria K Muday
چکیده

Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 (tir1) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 (ein2) and ethylene resistant1 (etr1) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra1, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings

Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings...

متن کامل

Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis.

Gradients of the plant hormone auxin, which depend on its active intercellular transport, are crucial for the maintenance of root meristematic activity. This directional transport is largely orchestrated by a complex interaction of specific influx and efflux carriers that mediate the auxin flow into and out of cells, respectively. Besides these transport proteins, plant-specific polyphenolic co...

متن کامل

Indole-3-acetic acid and auxin herbicides up-regulate 9-cis-epoxycarotenoid dioxygenase gene expression and abscisic acid accumulation in cleavers (Galium aparine): interaction with ethylene.

Interaction between auxin and auxin-induced ethylene was suggested in previous work to up-regulate abscisic acid (ABA) biosynthesis in cleavers (Galium aparine) through stimulated cleavage of xanthophylls to xanthoxin, catalysed by 9-cis-epoxycarotenoid dioxygenase (NCED). Here, the effects of auxin on NCED gene expression were studied in relation to changes in ethylene synthesis and ABA levels...

متن کامل

Cloning and Regulation of Flavonol 3 - Sulfotransferase in Ce I I = Suspension Cu It u res of H a veria biden tis ‘

Haveria spp. accumulate flavonol sulfate esters whose biosynthesis i s catalyzed by a number of position-specific flavonol sulfotransferases. Although the accumulation of sulfated flavonols appears to be tissue specific and developmentally regulated and to vary among related species, little i s known about the mechanism of regulation controlling the synthesis of these metabolites. In the presen...

متن کامل

Cloning and Regulation of Flavonol 3 - Sulfotransferase in Ce I I = Suspension

Haveria spp. accumulate flavonol sulfate esters whose biosynthesis i s catalyzed by a number of position-specific flavonol sulfotransferases. Although the accumulation of sulfated flavonols appears to be tissue specific and developmentally regulated and to vary among related species, little i s known about the mechanism of regulation controlling the synthesis of these metabolites. In the presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 156 1  شماره 

صفحات  -

تاریخ انتشار 2011